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A RESEARCH BASE SUPPORTING LONG TERM ALGEBRA
REFORM?'

James J. Kaput, University of Massachusetts - Dartmouth

1. Defining and Situating Algebra Reform'

Before discussing any research base supporting algebra reform, we must ad-
dress some prior questions:

What kinds of reform, what kinds of algebra, and reform on what
time scales?

But even before discussing what kinds of reform and algebra, we should acknowl-
edge why algebra reform is so widely called for. Where are we coming from?

1.1. Recent and Current Practice: The Base-Line

School algebra in the U.S. is institutionai;zcd as two or more highly redun-
dant courses, isolated from other subject matter, introduced abruptly to post-pu-
bescent students, and often repeated at great cost as remedial mathematics at the
post secondary level. Their content has evolved historically into the manipulation
of strings of alphanumeric characters guided by various syntactical principles and
conventions, occasionally interrupted by "applications" in the form of short prob-
lems presented in brief chunks of highly stylized text. All these are carefully orga-
nized into small categories of very similar activities that are rehearsed by category
before introduction of the next category, when the process is repeated. The net
effect is a tragic alienation from mathematics for those who survive this filter and
an even more tragic loss of life-opportunity for those who don't.

It would be easy to mistake this cryptic description for a deliberately harsh
and cartoonish denigration of actual practice, but, unfortunately, it is reasonably
accurate for the great majority of students studying algebra in the U.S. today, espe-
cially as experienced by those students. (Watch them, listen to them, and examine
their errors. What is the race or income of those whose lives are most likely to be
damaged?) Some of these activities might be described by teachers or other adults
as, say, "expression simplifying," "equation solving," "or problem solving." Some
others might describe them as "function rewriting," "function comparisons," or
"modeling," respectively. Others might describe them as operations in and appli-
cations of ratio tal or algebraic functions over the rationals or reals. But most

The preparation of this paper was partially supported by OERI Grant (#R117G10002)
funding the National Center for Research in Mathematical Sciences Education. The views
expressed, however, are those of the author and may not represent those of the funder. The
author wishes to thank Sigrid Wagner, David Slavitt, John Mason and Mary Spence for a
critical reading of all or parts of a first draft.
2 This paper will focus on school algebra in the United States, on the assumption that its
larger features are shared by our PME-NA neighbors and that reform efforts in the US are
of interest to our immediate neighbors.
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students see little more than many different types of rules about how to write and
rewrite strings of letters and numerals, rules that must be remembered for the next
quiz or test. Most arithmetic and calculus are experienced similarly, while teach-
ers burn out by the tens of thousands annually trying to teach the unwilling the
unwanted. Well-meaning policy makers are now requiring the algebra medicine
for all students, since, at least when viewed from a distance, it seemed to have a
salubrious effect on some students. The widely appreciated political rhetoric "We
can't afford to waste a single person" is now colliding with a curriculum that, in
fact, wastes millions. Algebra has been transformed in the national consciousness
from a joke to a catastrophe.

1.2 Three Phases of Reform

A potential for confusion exists regarding the kinds of reform possible or
desirable over different time scales. What may seem radical as a proposal for
immediate implementation appears less so in the context of a longer term picture.
Hence we will discuss three overlapping phases of reform, short, intermediate,
and long term. Short term, over the next two or three years, involves carrying out
ongoing changes in existing curricula the use of graphing calculators in existing
Algebra I and II courses, for example. Intermediate term, covering the period
from the late 1990s through the first few years of the next century, involves imple-
menting the larger middle school and other reforms currently nearing completion
of their first editions. The third, long term, phase begins during the early years of
the next decade and involves deep restructuring of the curriculum that makes room
for important new content and flexibility, especially at the secondary level. Index-
ing phases of reform temporally ignores the fact that change moves unevenly across
the land, so that one phase may be well underway in one location while its prede-
cessor is in full swing elsewhere. My comments will focus more on the longer
rather than the shorter term - the genuine and significant influence of research on
practice is inevitably long term. Short term connections between research and
practice are usually closely related to evaluation of one or another innovation or
theoretical perspective.

1.3 Three Dimensions of Reform

To clarify the nature of the reforms to be discussed, and implicitly predicted,
I offer three dimensions in which to measure change:

(1) Breadth- breadth of conceptions of algebra coherently implemented;

(2) Integration- curricular integration of algebra with other subject mat-
ter; and

(3) Pedagogy movement towards a more active, exploratory pedagogy,
particularly exploiting electronic technologies.

The Breadth dimension refers to the many forms of algebra and algebraic reason-
ing and the ways that they cohere: algebra as generalizing, abstracting and repre-



senting; algebra as the syntactically defined manipulation of formal objects; alge-
bra as the study of structures abstracted from computations; algebra as a modeling
language or as a cluster of related languages; algebra as the study of functions,
relations, and joint variation; algebra as means of controlling physical or cyber-
netic events, including simulations. These will be elaborated below. The Integra-
tion dimension, curricular integration of algebra strands with other subject matter,
is meant to include both mathematical and non-mathematical subject matter. Taken
together, Breadth and Integration enable a large scale restructuring of the curricu-
lum that removes algebra as a costly pair of high school courses, and when coupled
with restructuring of other subject matter into more longitudinally coherent strands,
make space in the secondary school curriculum for the new mathematics needed
by students of the next century space also needed for curricular innovation and
exploration that is absolutely impossible today.

The Pedagogy dimension has relatively little directly to do with algebra in
strictly mathematical terms as a received cultural artifact, but everything to do
with the way that algebra is experienced by students. Without improvement in this
dimension along the lines described in the NCTM Professional Teaching Stan-
dards, (NCTM, 1991) for example, change in the other dimensions will be mean-
ingless.

"Reform" in the usual modem sense, perhaps deriving from the 19th century
notion of "progress," implies improvement relative to some value-norms, and I
take the three dimensions to be ordered in some sense appropriate to each: more
Breadth and more Integration are presumed to be better, as is a more student-
active-reflective Pedagogy. There is no clean separation among the phases of re-
form to be described, and most reform efforts vary in their progress across dimen-
sions. Furthermore, the dimensions mselves are not entirely independent in-

creased Breadth serves Integration, and vice-versa, while improved Pedagogy serves
both. Lastly, different implementations of the "same" reform can vary, especially
in the Pedagogy dimension (Romberg, 1981; Romberg, 1983). Folks seeking non-
intersecting categories, orthogonal dimensions and linear orderings will not find
them in realistic appraisals of educational change in such a sprawling domain as
algebra - at least not in this paper.

2. Three Dimensions of Algebra Reform

2.1. The Breadth of Algebra: Five Aspects of Algebra

Despite the fact that we all use one word "algebra," there is no one algebra, no
monolith. Instead, we need to make sense of a richly interwoven tapestry of con-
structs and processes that both serve and constitute mathematics. The analysis
offered here is somewhat finer than that used in the NCTM Algebra Document (in
preparation), but, I believe, consistent with it - where the NCTM Document refers
to "themes," we refer to "aspects" although when attending to how they develop
in students' minds or appear in curricula, we also refer to them as "strands."



Talk about mathematics often slips between mathematics as implicitly shared
cultural artifacts objects, procedures, relations independent of any individual
as when we talk about learning functions, polynomials, factoring, ring theory, lin-
ear algebra, and so on and mathematics as ways of thinking generalizing,
specializing, abstracting, computing, analogizing, justifying, and so on. To de-
scribe algebra requires mixing both types of talk. Finally, characterizing algebraic
reasoning in terms of the types of mathematical objects involved is inadequate
students may be working with matrices or with integers mod 7 in clock arithmetic
(Picciotto, in preparation), for example, in entirely concrete, arithmetic ways rather
than algebraically. On the other hand, they might be reasoning quite abstractly
while using specific numbers, perhaps only orally, with no writing (Bastable &
Schifter, in preparation).

The first two aspects of algebra embody "kernel" features of algebraic rea-
soning that infuse all the others, the middle two amount to centrally important
mathematical topics, and the last addresses algebra as a web of languages. All the
aspects should be regarded as loosely spun and richly interwoventhey are by no
means separate. And each has different roots in human cognitive and linguistic
powers and draws on different kinds of experience, particularly in its primitive
and emergent forms among younger children.

2.1.1. [Kernel] Algebra as Generalizing and Formalizing
Patterns & Constraints, especially, but not exclusively Algebra as
Generalized Arithmetic Reasoning and Algebra as Generalized
Quantitative Reasoning

Generalization and formalization are an intrinsic feature of much mathemati-
cal activity, and the mathematical systems and situational contexts in which gener-
alization and formalization can be done are unlimited. I suggest that there are two
sources of generalization and formalization: reasoning in mathematics proper, and
reasoning in situations based outside mathematics, but subject to mathematiza-
tion. The particular forms described below, arithmetic and quantitative, differ in
exactly this fundamental way: generalizing in arithmetic (numerical patterns,
arithmagons, etc.) begins within a mathematicM system, (often) the system of in-
tegers, their properties and operations, where understanding of the mathematical
structures plays the core constraining role; quantitative reasoning is based in
mathematizing situations and offers a different basis for generalizing and formal-
izing, where understanding of the semantics of the situation plays the core con-
straining role.

Both the means and the goal of generalizing is to establish some formal sym-
bolic objects that are intended to represent what is generalized and render the gen-
eralizations subject to further reasoning, perhaps aided by computation where
the computations are at least temporarily guided by syntax and patterns associated
with the formal system rather than what is formalized. Acts of generalization and
gradual formalization of the constructed generality must precede work with for-
malisms - otherwise the formalisms have no source in student experience. The



current wholesale failure of school algebra has shown the inadequacy of attempts
to tie the formalisms to students' experience after they have been introduced. It
seems that, "once meaningless, always meaningless." We now turn to the two
prime candidate sources for generalization and formalization in school mathemat-
ics.

Algebra as Generalized Arithmetic Reasoning. An enduring theme in al-
gebra education, with roots in 18th-19th century views of the subject (Pycior, 1981;
Sfard, 1995), regards algebra as a language that encodes the general rules of arith-
metic, particularly rules concerning the operations. It has proven itself to be at-
tractive as a factor in curriculum design because it explicitly builds on what stu-
dents presumably know (arithmetic), helps generalize that knowledge, helps build
a more general ability to generalize in the process, and exploits the rich intrinsic
structure of the integers as a context for pattern development, formalization and
argument - for example, how many reasonable conjectures might one make con-
cerning combinations of consecutive integers? Linchevski (1995) put it thus: "Al-
gebra with Numbers and Arithmetic with Letters: A Definition of Pre-Algebra"
(Summary Report to the ICME-7 Working Group on Algebra, 1995). Work along
the same lines by Bastable and Schifter (in preparation) offers rich examples of
second to fourth grade students generalizing and discussing generalizations of arith-
metic relations based in specific cases, where formal representations are not used,
but where generality is at the heart of the activity and discussion. This is one set of
examples that points the way to building depth in arithmetic, serving the Integra-
tion dimension of reform. Other types of activity involving arithmagons and nu-
merical patterns, as examples among many possible, provide contexts for extend-
ing this strand of algebra towards simultaneous equations and beyond (Bell, 1995;
Romberg & Spence, 1995; van Reeuwijk, in preparation). It forms the major part
of some recent attempts to begin the study of algebra in the early middle grades
(Curcio, 1994

Algebra as Generalized Quantitative Reasoning. As defined by Thompson
(1993; 1995), Thompson & Smith (in preparation) a person is thinking of a quan-
tity when he/she is thinking of a quality of some aspect of a situation that he/she
regards as measurable (or countable) length, density, mass, age, velocity, num-
bers of red marbles, area, rate of inflation, and so on. Such conceptual acts may or
may not involve the actual assignment of numerical values to the quality involved
via the use of some unit of measure or counting. Quantitative reasoning might
also involve abstract quantities, such as in determining "how many 3's in 15"
(where the quality is simply "size") by, for example, counting how many units of 3
need to added together to yield 15. Thus this aspect of algebra can be thought of as
encompassing the Generalized Arithmetic aspect. I argued (Kaput, 1995), and
Thompson & Smith (in preparation) argued that quantitative reasoning is superior
to arithmetic in opportunities to build algebraic reasoning. It draws more fully on
different forms of experience, including growth and change, can be moi .. oriented
towards the expression of relationships for purposes of inference rather than merely
towards computations of values of quantities, and, unlike arithmetic-based activ-
ity, it involves a more direct link to physical and cultural experience. Indeed, a
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closer look at the history of algebra from this perspective suggests that this is
where algebra started: a review of the historical "algebra" problems dating back to
Arabic algebra reveals them to be quantitative reasoning problems, not arithmetic
problems (Katz, 1995). Nonetheless, and despite their concreteness, they served
as bases on which general, more algebraic solutions could be (and were) built.

In thinking of algebra both as generalized arithmetic and as generalized quan-
titative reasoning, it is important to keep in mind that the generalizing does not
start with elementary school mathematics and end there, leading to algebra. Gen-
eralizing is a continuing activity that can occur at the most sophisticated levels of
mathematics (e.g., in algebraic number theory or advanced mathematical model-
ing) where the qualities being defined and measured might be subtle economic
constructs, such as elasticity of demand or the impact of the Fed's interest rate on
fluidity of capital.

2.1.2. [Kernel] Algebra as Syntactically-Guided Manipulation of
(Opaque) Formalisms

The tremendous power of formalisms is behind the prodigious development
of modern science and technology (Bochner, 1966). For example, when one com-
putes the derivative of (3x2+2)' using the Chain Rule, one is exploiting the for-
malisms developed by Leibniz (Edwards, 1979). Indeed, the word "calculus" re-
fers precisely to this feature - applying rules to calculate with symbols without
regard to what they might refer to. When dealing with formalisms, whether they
be traditional algebraic ones or more exotic ones, the attention is on the symbols
and syntactical rules for "manipulating" them (changing their form). However, it
is possible to act on formalisms semantically, where one's actions are guided by
what you believe the symbols to stand for. To clarify, consider two ways of solv-
ing the equation 3x-2=10: One way is semantically guided in this case by rea-
soning within the numerical conceptual system represented by the formal equa-
tion. It is usually approached as an inverting process. One thinks something like
"If I take 2 away from 3 times a number, I get 10. So 3 times the number must be
12, so the number must be 4." The syntactically guided approach treats the sym-
bols as objective entities in themselves, and the conceptual system of rules applies
to the system of symbols, not what they might stand for. In this case, one applies
a rule for adding 2 to both sides of the equation, to get 3x=12, and then one divides
both sides by 3 to get x=4. And often these rules come to be thought of as applying
to the symbols as physical objects "move the -2 to the right hand side and change
its sign."

As noted, much of the traditional power of algebra arises from the internally
consistent, referent-free operations that it affords. For an historical discussion of
the loosening of referential constraints, see (Kaput, 1994, pp. 101-103). Many
(e.g., Cuoco, in preparation) take syntactically guided computations on formal-
isms to be the essence of algebra. However, as already noted, neither the formal-
isms nor the actions on them can be viably learned without some semantic starting
point where the formalisms are initially taken to represent something in the student's



experience. Furthermore, this referential relation is best anchored in the act of
generalization from the semantics of the domain represented by the formalisms.

2.1.3. [Mathematical Topic] Algebra as the Study of Structures
Abstracted from Computations and Relations

Acts of generalization and abstraction give rise to formalisms that support
syntactic computations that, in turn, can be examined for structures of their own,
usually based in their concrete origins. This aspect has some roots in the 19th
century British idea of algebra as universalized arithmetic (Kline, 1972) but also
can draw on structures arising elsewhere in students' mathematical experience
for example, in matrix representations of motions of the plane, in symmetries of
geometric figures, and in manipulations of letters in words. These structures seem
to have three purposes, (1) to enrich understanding of the systems that they are
abstracted from, (2) to provide intrinsically useful structures for computations freed
of the particulars that they once were tied to, and (3) to provide the base for yet
higher levels of abstraction and formalization. While this aspect in the past has
been reserved for elite students at the college level, some now call for earlier intro-
duction for the majority of students (Cuoco, in preparation; Picciotto, in prepara-
tion; Picciotto & Wah, 1993, March).

2.1.4. [Mathematical Topic] Algebra as the Study of Functions,
Relations and Joint Variation

Fey (1984) recalls the long history of attempts to use the idea of function as an
organizing principle for the mathematics curriculum, including and especially al-
gebra. Schwartz (Schwartz & Yersulshamy, 1990) and Yerushalmy & Schwartz,
(1993) have offered an analysis of how studying the idea of function and its sev-
eral standard representations can simplify and organize the confusing algebra cur-
riculum confronted by today's students and teachers, while Dubinsky and col-
leagues (Breidenbach, et al., 1993) and Thompson have analyzed its conceptual
growth in individuals. As a product of generalization, the idea of function has
roots in causality, and joint variation (Freudenthal, 1982; van Reeuwijk, in prepa-
ration) and hence permeates the sciences. Examples of young students developing
this idea have been offered by Tierney & Monk (in preparation), and middle school
curriculum materials embodying this point of view have been produced by Con-
nected Math Project, TIMS. On the other hand, functions used in the context of
less temporally mediated phenomena, such as occurring in arguments involving
divisibility of products of consecutive even integers (where the underlying vari-
able works to carry generality more than it works to carry covariation), the idea of
covariation may be less salient, and attention focuses on the generality of the pat-
terns being expressed. When coupled with the ideas of iteration and recursion in
computational media, functions feed into the idea of dynamical system (Devaney,
1989; Sandefur, 1990). This strand grows out of and intertwines with the General-
ized Quantitative Reasoning strand.



2.1.5. Algebra as a Cluster of Modeling Languages and
Phenomena-Controlling Languages

Modeling Languages. Some would argue (e.g., Freudenthal, 1983) that mod-
eling is the primary reason for studying algebra. The generalized quantitative
reasoning aspect can be regarded as part of a larger modeling aspect that extends
to include the rapidly widening collection of notation systems that are used to
represent and visualize phenomena of all sorts. These support the new forms of
visualization and reasoning associated with dynamical systems, deterministic chaos,
and generally the modeling of nonlinear phenomena. Of special interest is how
"algebraic" are the various notation systems? One way to approach this question
is to ask how do they express generality, and how do they support syntactically
guided manipulation? Sornt, are pictoric, some are coordinate-based, while others
are character-based. The computer medium now supports operations on virtually
any notation system; for example, one can systematically adjust the color scales of
a color-coded temperature map to help reveal patterns, or one can overlay such a
map with a topographic map, etc. Is this modeling in the classic sense that devel-
oping a differential equation for describing the motion of a falling body is model-
ing? Of course, many, perhaps most models have functions at their core, so as a
curricular and cognitive strand it weaves intimately with the previous strand.

Languages that Create and Control Physical and Cybernetic Phenom-
ena. In modeling, we begin with phenomena and attempt to mathematize them
But computers now enable us to reverse this refermtial relationship in interesting
ways by creating simulation phenomena within the computer medium (Kaput,
1994) and by driving physical devices (Nemirovsky, 1994). In these cases, one
usually cycles repeatedly between the phenomena, wherever they happen to be
located, and the notations that give rise to them. In recent work (Kaput, in prepa-
ration) we are also able to import phenomena into the computer via standard MBL
systems and compare them with algebraically generated phenomena. For example,
one can "walk" a certain velocity graph that controls the motion of a character in a
simulation, and then create algebraic functions that control another character whose
motion can be compared with your motion as they "walk" side by side. In these
sorts of environments new relationships between algebra and physical phenomena
are possible. Lastly, computer languages, beginning with FORTRAN, then BA-
SIC and more recently Logo (Grant, Fat lick & Feurzeig, 1971; Noss, Hoy les &
Sutherland, 1993; Papert, 1980) and ISETL (Dubinsky, 1991; Dubinsky & Leron,
1994) amount to algebraic formalisms within which one can create or experience
explorable and extensible mathematical environments. Nor do these languages
need to be alphanumeric, e.g., Function Machines (Feurzeig, 1993). As has been
noted (Kaput, 1986; Noss et al., 1993), these computer environments change in
fundamental ways the relations between the particular and the general, and hence
the nature of mathematical experience available to students, including and espe-
cially means of argument and justification.



2.2. Integration of Algebra with Other Subject Matter

As we all know, and for many good reasons both cognitive and practical, the
NCTM Curriculum and Evaluation Standards (NCTM, 1989) put a premium on
"connections." Integration and connections can take place at several different
levels:

Within-mathematics connections between different representations
of given mathematical objects such as functions, or between diffe;
ent areas of mathematics, as between algebra and geometry involv-
ing, for example, traditional analytic geometry or connections be-
tween matrices and transformations of the plane.

Connections between mathematics and subject matter from other
mathematical sciences such as computer science, probability, or sta-
tistics.

More distant connections usually involve mathematics in modeling
situations developed within the structures and from the perspectives
of other disciplines, in the physical, life and social sciences, as well
as in business, medicine and engineering.

Pedagogical Power. To the extent that algebra can be learned while learning
other subject matter, not only is its power appreciated, but its power is learned.
And importantly, learning of the other subject matter is enhanced how much
"science" is learned in grades K-8 as vocabulary, or, more recently, as collections
of interesting phenomena, without any quantitative content (AAAS, 1994).

Curricular Efficiency. We can no longer afford to teach academic subjects
one at a time, end-to-end. We need to exploit the compounding effect of connect-
ing algebra with other subject matter: the algebraic languages reveal the common
structures across domains. Building algebra in different domains can reveal the
similarities of the underlying ideas while simultaneously strengthening understand-
ing of the structures, exercising the associated procedural skills, and enhancing
appreciation of mathematics' power.

Curricular Depth. But perhaps even more importantly, this last observation
applies to much of the mathematics that now appears in K-8: How much could the
mathematics of the pre-high school grades be enriched, deepened and made more
coherent if, at every turn, questions of generality and extension were raised and
pursued (Bastable & Schifter, in preparation)? To raise such questions inevitably
invites algebra as a means for expressing generality and abstraction, and for rea-
soning within these expressions.

Longitudinal Coherence - From Layercake Filter to Coherent Strands.
Algebra is not only a powerful filter of students, but it is also a barrier preventing
access to powerful ideas. As now structured, algebra courses lie between elemen-
tary mathematics and calculus - the mathematics of change and all the fields that
use calculus. Historically, only a small minority of students cross this barrier, but
current work in the SimCalc Project indicates that the mathematics of change may
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be an ideal site for the learning of algebra, a notion implicit in the growth and
change theme of the NCTM Algebra Document (in preparation). Integration,
coupled with Breadth, are critically important dimensions of reform.

2.3. Changes in Pedagogy

The distinction between curriculum and pedagogy is a slippery one, espe-
cially when one departs from a description of mathematics as a received cultural
artifact as represented in books and other media, and instead discusses mathemat-
ics as constructed or experienced by individuals. Nonetheless, for analytic pur-
poses it is useful to distinguish between descriptions of acts of teaching and their
surrounding circumstances on one hand, from the shared objects, procedures, rela-
tions, forms of reasoning, and notation systems that we expect students to learn on
the other. Desirable pedagogies have been set forth in the NCTM Professional
Teaching Standards, (NCTM, 1991) for example, and, for brevity's sake will not
be repeated here except to note that it is possible to achieve surface forms of val-
ued pedagogies while failing entirely to engage students with significant math-
ematics. We often hear that changes in curriculum without changes in pedagogy
are empty changes. But the reverse is at least as true, perhaps because it may be
easier, especially at the lower grade levels, where teachers are often more equipped
to grow pedagogically than they are to grow mathematically. An implication is
that growth in pedagogy and growth in mathematical power need to be intimately
linked in the kinds of teacher education that will move practice along the three
reform dimensions.

3. Research Supporting Algebra Reform

3.1. Research Associated with the Breadth Dimension: Mapping
Algebraic Thinking in Its Full Diversity

Obviously, the aspects, especially when thought of as strands, interweave com-
plexly. Mapping these connections, especially how they grow in students' minds
under various instructional approathes, is an important research agenda for long
term algebra reform. Acknowledging the real complexity and breadth of algebra
in our research and how algebra may emerge in students' own language and ac-
tion, particularly in diverse forms, is an important step towards research of rel-
evance to long term reform that respects the diversity of both the students who
need to learn algebra and the many ways they will use it (Confrey, 1995, Dennis &
Confrey,, 1995). Steps in this direction are necessarily made by the large curricu-
lum development projects in outlining curricula, and these can serve as starting
points, e.g., (Romberg & Spence, 1995).

3.2. Traditional Research Supporting and Informing Current Practice

Research and curriculum are, as parts of a larger integrated social and cultural
system, intimately, albeit complexly, connected. And, as noted, the forces now at



work pushing reform of algebra emanate at least as strongly from the larger soci-
ety as they do from education researchers, a fact not uncommon historically
(Howson, et at, 1981, chapter 1). To the extent that they share a common vision of
school mathematics, curriculum and research each helps define the other. This has
been especially true in the case of the deficit model "disaster literature," where
student shortfalls in learning, "misconceptions," and so on (e.g., Kaput & Sims-
Knight, 1983; Kuchemann, 1981; Kuchemann, 1984; Matz, 1982; Sleeman, Kelly,
Martinak, Ward & Moore, 1989) are in large part a measure of the impact of the
current or recent curriculum, although this is seldom suggested in the research
reports, which seemed to take for granted the basic shape of existing curricula. On
the positive side, in studies of what students can learn, researchers' visions of
school algebra have extended well beyond what t3pically appears in current courses.
However, some researchers have studied the learning of symbol manipulation
(Davis, Jockusch & McKnight, 1978), especially learning within computer envi-
ronments (Chaiklin, 1989; Feurzeig, 1986; McArthur, Stasz & Zmunidzinas, 1990;
Sleeman, 1982; Sleeman, 1984; Sleeman et al., 1989), where the subject matter
fits reasonably well with the formal side of today's curriculum, Athough the orga-
nizations offered by researchers tend to be much more principled than those em-
bodied in the textbooks.

Prior research also tended to treat algebra one aspect at a time. A significant
amount of earlier research, particularly research emanating from other countries
(Soviet Studies in Mathematics Education, 1976), was directed towards algebra as
generalization, especially generalized arithmetic (Bell, 1995), or formal argumen-
tation (Davydov, 1975, 1990). Some research viewed algebra as a modeling lan-
guage (de Lange, 1987). Another line of research has investigated students' de-
velopment of understanding of concepts of function (Breidenbach, Dubinsky, Hawks
& Nichols, 1992; Dreyfus & Eisenberg, 1984; Dubinsky & Harel, 1990; Eisenberg
& Dreyfus, 1994; Thompson, 1994) and the different representations of functions
(Goldenberg, 1988; Romberg, Carpenter & Fennema, 1993; Yerushalmy, 1991).
Again, it is worth emphasizing that this research did not strongly affect practice in
the U.S., which has been tightly defined by commercial textbook series for "Alge-
bra I & II" dominated by a few major publishers.

Integration has traditionally taken the form of algebra applications in the form
of "word problems" rather than in the larger senses described above. And, since
these researchers by and large shared the curricular assumption that ability to use
algebra is reflected in ability to solve such problems. much research, far too exten-
sive to be cited here and extending well into the psychological sciences, focused
on learning how to solve word problems of various types. This research helps
only indirectly in the current reform effort, because the current reform no longer
shares this curricular assumption. Research centered on pedagogy is perhaps best
exemplified by Rachlin (1981), who shows how far one can move along the peda-
gogy dimension with the current content.

3.3. The First Phase of Reform: Short Term

First attempts at reform leave the larger course structures in place, but can be
characterized as significant enrichments, inevitably using electronic technology,
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of existing courses. These enrichments give much more prominence to and en-
compass a wider set of applications; utilize the production, comparison and ma-
nipulation of functions in linked numerical, graphical and symbolic forms; and
usually engage students in conjecture and exploration using the interactive tech-
nology. I would judge these attempts as relatively low in the Integration dimen-
sion since they share the feature of reforming algebra where it already appears in
the grade 8-12 curriculum, leaving the algebra as isolated from other subject mat-
ter except as it may be incorporated into problem-applications. In terms of the
Breadth dimension it is a significant move towards inclusion of a functions-view
of algebra, forced in part by the input-expectations of the electronic devices used.
These same devices support multiple, linked representations of these functions
largely defined symbolically, of courseand hence support within-mathematics
progress in the integration dimension . Also, depending on the case at hand, gen-
eralization and the expression of generality play an increased role in the Breadth
of algebraic experiences offered.

Much of this work is the product of innovation by individual teachers or the
use of slightly modified texts or supplementary materials (usually associated with
graphing calculators). Obviously, much variation is embedded in this category,
especially in the Pedagogical dimension. Nonetheless, especially as the technol-
ogy supports exploration and active learning, significant movement along the Peda-
gogical dimension tends to occur. However, movement in all these dimensions is
limited by the presence of the traditional constraints of the courses in which the
innovation is taking place.

3.4. Research Supporting and Informing the First Phase of Reform

A very revealing dissertation study of a short term Algebra II reform effort led
by an individual teacher at a progressive private school has been provided by Slavit
(1994). The teacher was extremely competent by all standard measures, the stu-
dents were committed to learning, and the classroom circumstances were near-
optimal for use of graphing calculators. We would rate him "high" on the Peda-
gogy dimension (he was a Presidential Award winner). Many teachers and math-
ematics educators would envy this teacher's situation and applaud his and his stu-
dents' achievements, which were considerable. However, his students were af-
flicted with most of the limitations of concept image of function reported by Vinner
(1983; Vinner & Dreyfus, 1989), particularly as revealed by problems involving
functions that were not described in algebraically closed form. What of typical
students and teachers working under sub-optimal conditions? While the teacher's
efforts and achievements were impressive, certain key elements of the curriculum
remained unchanged; for example, functions were almost always described in a.:-
gebraically closed-form (except on a revealing assessment), the course was sand-
wiched in a rather traditional sequence, and the problems and activities were usu-
ally textbook-brief (with a few exceptions) and made relatively little use of real
data (physical or otherwise), not unlike findings from another pair of dissertation
studies (Rich, 1990; Teles, 1989) and well known work by Heid (Heid & Kunkle,
1988) and others. It is important, both for fairness and for our analysis, to note that



none of these factors was within the teacher's (or researchers') direct control. They
await the next phase of reform, and, in fact, define the boundary between Phases 1
and 2.

3.5. The Second Phase of Reform: Intermediate Term

The second phase of algebra reform centers on the integration of algebra into
the middle school very much in the spirit of the first level of reform, but with two
important differences: (1) the algebra is integrated into a larger curriculum, and (2)
as middle school mathematics, it is intended (by its authors) to be offered to all
students. Again, considerable variation exists in this category, particularly in the
role and types of applications. Generally, however, the curriculum and the activi-
ties tend to be structured in larger pieces than Phase 1, and the algebra tends to
emerge from the activity and contexts in which students work. Furthermore, ma-
teri&s are usually structured according to topic strands, with algebra used to ex-
press generalizations and abstractions within these strand topics (Romberg &
Spence, 1995). Thus considerable movement along the Integration dimension is
achieved in Phase 2.

Algebra as a means of modeling and generalization is increased, the place of
functions and their multiple representations is preser not increased to in-
clude non-traditional diagrammatic and pictorial notations (Romberg et. al, 1995)
and some of the materials broaden the subject to include some formal, structural
aspects of algebra as arise in the contexts of matrices and clock arithmetic. Hence
further movement along the Breadth dimension is achieved.

In the Pedagogical dimension, even more movement occurs, since much ma-
terial is open-ended by design, involves students working in groups, and in some
cases involves students designing and producing artifacts (Goldman, 1994). The
level of pedagogical change has, in some reports, reached the limits of tradition-
ally educated teachers' ability to adapt.

Most of this work is connected to ongoing curriculum development projects
that will not be widely available until 1996 or 1997, with the exception of UCSMP,
whose newer editions began to appear in the mid 1990s, and which is distinguished
by its K-12 comprehensiveness. Phase 2 seems likely to dominate the end of this
decade and the early part of the next. Because of the shift of the focus of these
innovations to middle school, many of the constraints of existing secondary school
structures are loosened. However, the resulting changes at the secondary school
are unclear, except that much of the Phase 1 activity will be inappropriate for those
students who will have progressed through Phase 2 materials in middle school.
Hence Phase 2 reform is more clearly defined at the middle school level than it is
at the secondary school level, a fact that is likely to yield considerable difficulty in
transition between Phase 1 and Phase 2.

3.6. Research Supporting and Informing the Second Phase of Reform

Most of the research about Phase 2 has taken the style of research-based for-
mative evaluation of curriculum materials and the school-based implementation



process because the innovators are either researchers themselves, or are affiliated
with researchers.

3.7. The Third Phase of Reform - Long Term

This phase of reform has not yet begun in the U.S. (to my knowledge), al-
though, as argued below, the ingredients needed to begin are available. It involves
full integration of the development of the many forms of algebraic reasoning across
all grades with the learning of important mathematics. In this phase algebra is
treated less as a subject in its own right (with exceptions noted shortly), and more
as a general, ubiquitous means for creating, expressing and operating on generali-
zations and abstractions, as a medium for modeling, and as a set of computer based
languages to create as well as model phenomena. It serves a wide variety of pur-
poses, making sense of the quantifiable and structural aspects of experience in the
context of modeling and in other mathematics. It is also a medium for creating
new mathematics and reorganizing old mathematics (including concepts of num-
ber and operations on numbers). Algebraic reasoning, and the various notational
systems, conventional and otherwise, grow organically and gradually, developing
as they are needed, with technology likewise introduced gradually as needed. At
certain junctures, however, consolidation and some practice are required, perhaps
as long as a few months, but not a full course. The exception could be mathemati-
cal electives at the secondary level, where particular aspects of algebra may be
explored more fully, (e.g., linear algebra, or algebraic structures) (Cuoco, et al.,
1995). Computer technology supports just-in-time learning that enables students
to learn specific skills when they are needed. In this phase of reform, algebra
enhances and provides coherence to the learning of other subject matter strands
the mathematics of number and quantity, of space and dimension, of data and
uncertainty, of growth and change (including growth and change in other sciences
such as physics and biology), of data structures, and so on. Algebra disappears
both as a set of isolated courses and as a set of intellectual tools, in the sense that
for the carpenter, when in use the hammer becomes an extension of the arm (Polanyi,
1958). The different aspects of algebra become habits of mind, ways of seeing and
acting mathematicallyin particular, ways of generalizing, abstracting and for-
malizing across the mathematics and science curricula, including curricula lead-
ing to the world of work. The new freedom from the constraints of the historic
high school mathematics curriculum is exploited to include mathematical elec-
tives such as dynamical systems and nonlinear modeling (Sandefur, 1992), combi-
natorics, number theory, non-Euclidean geometry, and so on, studies not currently
present in school curricula. A market for innovation is incentivised and mediated
by telecommunication technologies that enable individuals to offer instructional
materials to geographically dispersed students on a royalty basis.

Relative to content, this under specified and utopian-appearing scenario is not
too far from the approach to algebra taken in certain other countries, (e.g., the
Netherlands, Russia, and elsewhere). However, I would suggest that the particu-
lars in the U.S. may very well be substantially different from those that have evolved
in other countries, especially given that computer technologies are a powerful in-



gredient operating in Phase 3 but not strongly present today. Giimpses of details
are provided in the new NCTM Algebra Document for Algebra in the K-12 Cur-
riculum (in preparation) where algebra is depicted as a K-12 enterprise touching
all aspects of mathematics. While provision is made for practice and consolida-
tion, the implicit pedagogy is student-centered, with active exploration, conjec-
ture, verification and student authorship of mathematics and models emphasized
throughout.

3.8. A Frst Pass at Organizing Research Supporting aid Informing
the Third Phase of Reform

The research basis of this approach certainly does not exist today, although
the issue has been discussed as early as the 1930s (Slavit, 1994) and thirty years
later in the mid 1960s (Davis, 1964 ; 1984). Below I will attempt to point to
research that seems to offer promising starting points. This research largely in-
volves younger children since I believe that the early grades will initially and nec-
essarily be the locus of greatest change in algebra instruction, leading to even
larger changes at the secondary level later. Secondly, we need to revisit and ex-
tend research in the learning of specific subject matter, especially at the founda-
tional levels, in order to find where and how opportunities to generalize and ab-
stract can be exploited, that is, opportunities to learn "and use algebra. Thirdly, we
also need to look closely at research and development work in other countries
where algebra learning has been integrated with other learning, and where the
approaches seem to be in line with what seem appropriate for students of this
country.

3.8.1. Beginning the Strands in Elementary Mathematics

Early work has taken the form of documenting opportunities for generalizing
and formalizing in arithmetic (Bastable & Schifter, in preparation), and in quanti-
tative reasoning (Confrey, 1994; Confrey & Smith, 1995; Thompson, 1994; Th-
ompson, 1995; Tierney & Monk, in preparation). Additional work, based on new
curricula, has shown children capable of handling formal symbolism (Romberg, et
al., in press), building abstract formal structures in geometry (Lehrer & Danneker,
in preparation), and handling complex interpretation of graphs (Russell, et al.,
1995; Ain ley, 1995). An important feature of much early work is the subtle and
oral rather than written character of children's early attempts to generalize. Since
they have not developed symbolism to represent their generalizations, they must
use natural language and the many oral strategies for expressing generality devel-
oped in daily communication (Mason. in preparation). Hence those who would
study these activities as opportunities for the development of algebraic reasoning
need a sensitive eye and ear. And furthermore, teachers who would nurture the
development of algebra as a means to express generality likewise would nend to
be sensitized to create as well as identify such opportunities. Fortunately, founda-
tions for such work already exist in the research of those who have studik.,d the
development of arithmetic reasoning (e.g., Carpenter, Fennema, & Peterson, 1987;
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Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Fennema, Carpenter &
Peterson, 1989; Fuson, 1990; Sandefur, 1990; Steffe & Cobb, 1988) as well as in
the study of the associated teacher development (Cobb, Wood, & Yackel, 1990;
Cobb, Wood & Yackel, in press; Fennema et al., 1989; Gravemeijer, 1992; Schifter,
1994).

An important alternative to the oral expression of generality and an accompa-
nying move to formal expression occurs in computer environments, especially in
situations such as Logo programming (Harel, 1991; Lehrer, et al., submitted; Noss,
in preparation; Noss et al., 1993), where the formal expression is intrinsic to the
production of a dually-layered visible artifactthe Logo program and the outputs
of that program. Another context involves the control of simulations, where stu-
dents need to set algebraic parameters as part of the process of exploring the phe-
nomena of the simulation (Kaput, in preparation). For example, when controlling
the motion of synchronized swimmers in a pool, the students must determine how
to distinguish between a positional and a temporal head start; furthermore, in some
circumstances they must deal with as many as 20 coordinated swimmers, each of
whom is to be offset in their initial position by a fixed distance from the swimmer
to their left, say. In this case, to achieve efficient and systematic control of the
swimmers begs parametric thinking, where each swimmer's motion is a particular
function of time, but where the functions themselves vary systematically across
the swimmers. We are currently developing simulation environments to scaffold
this kind of thinking among 5th-7th graders.

3.8.2. Approaches in "Algebraically Successful" Countries

Perhaps the best, and surely the most available example, of a curriculum that
approximates the vision sketched above is that developed by the Freudenthal Insti-
tute in the Netherlands. This curriculum contains no algebra courses, but is rich in
algebra experiences beginning in the early grades. A distinguishing feature is the
repeated application of the principle of "progressive formalization," whereby stu-
dents' productions are gradually shaped into more formal systems over time, all in
the context of realistic applications.

Another example of active early development of student algebraic reasoning
and argumentation is offered in the work of the Russian mathematics educator
Davydov (1990). A comparison study of the rather dramatic impact of Davydov's
approach has been made by Morris (1995).

4. How Can Research Lead Practice in New Directions?

4.1. General Strategies: Embed Knowledge in Shared Artifacts

One way the insights of disciplined inquiry find their way into practice is by
being embedded within artifactscurricula, tools, and explicit pedagogies associ-
ated with these--just as medical research leads to drugs, apparatus, and therapies.
The process of reification of knowledge in widely usable tools and representations
is a primary means for the distribution of that knowledge (Latour & Woolgar,



1986; Pea, 1993). This is exactly the approach taken by the Dutch (Gravemeijer,
1992). It seems likely to me that such systemic approaches are likely to have the
greatest long term impact, partly due to the changing economics of R&D work
(Lesh & Lovitts, 1994), and partly due to the dramatic increases in connectivity
afforded by electronic networks that will allow distributed collaborative efforts
involving many researchers working together at a distance (Hunter, 1993, Fall;
Hunter & Goldberg, 1994). Another traditional way not to be ignored is through
policies and vision statements such as the various NCTM standards statements,
especially the NCTM Algebra Document (in preparation), and MSEB vision state-
ments.

4.2. Changes in Perspectives on What Constitutes Algebra Research:
Switching the Duck for the Rabbit

The foreground/background switch that I have advocated for algebra's place
in the school mathematics curriculum needs to be matched with a corresponding
switch in the way we approach research in the development of algebraic reason-
ing. Much of the research will need to be based in the learning of the subject
matter that gives rise to the use of algebra. Not only does this imply that we need
to study the processes of generalizing and notating that generality in basic arith-
metic and quantitative reasoning, but also in the context of other major subject
matter strands (the mathematics of space, change, data, and so on). For example,
in my own work, we are examining how the mathematics of change, including the
basic ideas of calculus, can be the site for algebra learning in the latter elementary
and early middle school. This changes deeply the traditional prerequisite relation-
ship between algebra and calculus, and moves it closer to the historical relation-
ship, wherein they co-evolved (Kaput, 1994).

4.3. Methodological Changes: Testbeds for Longitudinal Study

I have already noted the need for larger studies coordinated with materials
development and teacher development. In addition, we need long-term studies
extending over four or more years, following both a cohort of students and a group
of teachers as they evolve under circumstances that differ in major ways from
today's practice. This calls for a testbed approach, wherein one or more sites
participate in material development, evaluation and research for an extended pe-
riod in an ecologically authentic context that involves practitioners throughout
(Hawkins, 1994). The process of dissemination may also take the form of such a
site becoming a specially supported resource on the World Wide Web that can act
to support teachers and graduate students at other sites, perhaps sharing clinical
data. Just as abrupt, late, isolated algebra may be a curricular strategy that de-
serves to be abandoned, the same might be said of brief, narrow, and isolated labo-
ratory algebra research, especially as a primary strategy.



References

AAAS. (1994). Benchmarks for Science Literacy. Washington, DC: American
Association for Advancement of Science.

Ainley, J. (1995) Re-viewing graphing: Traditional and intuitive approaches. For the
Learning of Mathematics, 15(2) June, 10-16.

Bastable, V., & Schifter, D. (in preparation). Classroom stories: Examples of
elementary students engaged in early algebra. In J. Kaput (Ed.), Employing
Children's Natural Powers to Build Algebraic Reasoning in the Content of
Elementary Mathematics.

Bell, A. (1995). Purpose in school algebra. Journal of Mathematical Behavior, 14, 41-
73.

Bochner, S. (1966). The role of mathematics in the rise of science. Princeton, NJ:
Princeton University Press.

Breidenbach, D., Dubinsky, E., Hawks, J.. & Nichols, D. (1992). Development of the
process conception of function. Educational Studies in Mathematics, 23, 247-285.

Carpenter, T. P., Fennema, E., & Peterson, P. L. (1987). Cognitively guided instruction:
The application of cognitive and instructional science to mathematics curriculum
development. In I. Wirszup & R. Streit (Eds.), Developments in school mathematics
education around the world, (pp. 397-417). Reston, VA: National Council of
Teachers of Mathematics.

Carpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C. P., & Loef, M. (1989). Using
knowledge of children's mathematics thinking in classroom teaching: An
experimental study. American Educational Research Journal, 26(4), 499-532.

Chaiklin, S. (1989). Cognitive studies of algebra problem solving and learning. In S.
Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of algebra,
(pp. 93-114). Reston, VA: National Council of Teachers of Mathematics.

Cobb, P., Wood, T., & Yackel, E. (1990). Classroom as learning environments for
teachers and researchers. In R. Davis, C. Maher, & N. Noddings (Eds.),
Constructivist views on the teaching and learning of mathematics. Journal for
Research in Mathematics Education Monograph No. 4, (pp. 125-146). Reston, VA:
National Council of Teachers of Mathematics.

Cobb, P., W-od, T., & Yackel, E. (in press). Discourse, mathematical thinking, and
classroom practice. In N. Minick, E. Forman, & A. Stone (FAs.), Education and
mind: Institutional, social, and developmental processes. New York: Oxford
University Press.

Confrey, J. (1994). Splitting, similarity, and rate of change: A new approach to
multiplication and exponential functions. In G. Harel & J. Confrey (Eds.), The
development of multiplicative masoning, (pp. 293-332). Albany, NY: SUNY.

Confrey, J., & Smith, E. (1995). Splitting, covariation and their role in the development
of exponential functions. Journal for Research in Mathematics Education.

Confrey, J. (1995). Student voice in examining splitting as an approach to ratio,
proportions, and fractions. In L. Miera, & D. Carraher (Eds.), Proceedings of the
19th Annual Conference for the Psychology of Mathematics Education, Vol. 1,
Recife, Brazil, 3-29.



Cuoco, A. (in preparation). Early algebra and the structure of calculations. In J. Kaput
(Ed.), Employing Children's Natural Powers to Build Algebraic Reasoning in the
Content of Elementary Mathematics.

Cuoco, A., Goldenberg, E. P., & Mark, J. (1995). Habits of Mond: An organizing
principle for mathematics curriculum. The Journal of Mathematical Behavior.

Curcio, F. (Ed.). (1994). Curriculum and evaluation standards for school mathematics:
Addenda series, grades 5-8: Patterns and functions. Reston, VA: National Council
of Teachers of Mathematics.

Davis, R. (1964). Discovery in mathematics: A text for teachers. Menlo Park, CA:
Addison-Wesley.

Davis, R. B., Jockusch, E., McKnight, C. (1978). Cognitive processes in learning
algebra. Journal of Children's Mathematical Behavior, 2(1), 10-320.

Davis, R. B. (1984). Learning mathematics: The cognitive science approach to
mathematics education. Norwood, NJ: Ablex Publishing Corporation.

Davydov, V. (1975). The psychological characteristics of the "prenumerical" period of
mathematics instruction. In L. P. Steffe (Ed.), Soviet studies in the psychology of
learning and teaching mathematics, (Vol. 7, pp. 109-206). Chicago, IL: The
University of Chicago Press.

Davydov, V. (1990). Types of generalization in instruction. Reston, VA: National
Council of Teachers of Mathematics.

de Lange, J. (1987). Mathematics, insight and meaning: Teaching, learning and testing
of mathematics for the life and social sciences. Unpublished dissertation,
Rijksuniversiteit Utrecht, Utrecht, The Netherlands.

Dennis, D., & Confrey, J. (1995) Functions of a curve: Leibniz original notion of
functions and its meaning for the parabola. The College Mathematics Journal, 26(3)
May, 124-131.

Devaney, R. (1989). An introduction to chaotic dynamical systems. (Second Ed.).
Redwood City, CA: Addison-Wesley.

Dreyfus, T., & Eisenberg, T. (1984). Intuitions on functions. Journal of Experimental
Education, 52, 77-85.

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D.
Tall (Ed.), Advanced mathematical thinking, (pp. 95-123). Dordrecht, The
Netherlands: Reidel.

Dubinsky, E., & Hard, G. (1990). The nature of the process conception of function.
Purdue University, West Lafayette, IN.

Dubinsky, E., & Leron, U. (1994). Learning abstract algebra with ISETL. New York,
NY: Springer-Verlag.

Edwards, C. (1979). The historical development of the calculus. New York, NY:
Springer-Verlag.

Eisenberg, 'T., & Dreyfus, T. (1994). On understanding how students learn to visualize
function transformation. In E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.),
Research in Collegiate Mathematics Education. I, (Vol. 4, pp. 45-68). Providence,
RI: American Mathematical Society.



Fennema, E., Carpenter, T. P., & Peterson, P. L. (1989). Teachers' decision making and
cognitively guided instruction: A new paradigm for curriculum development. In K.
Clements & N. F. Ellerton (Eds.), School mathematics: The challenge to change,
(pp. 174-187). Geelong, Victoria, Australia: Deakin University Press.

Feurzeig, W. (1986). Algebra slaves and agents in a Logo-base mathematics curriculum.
Instructional Science, 14, 229-254.

Fey, J. (1984). Computing and mathematics: The impact on secondary school curricula.
Reston, VA: NCTM.

Freudenthal, H. (1982). Variables and functions. In G. v. Barneveld & H. Krabbendam
(Eds.), Proceedings of Conference on Functions, (pp. 7-20). Enschede, The
Netherlands: National Institute for Curriculum Development.

Freudenthal, H. (1983). Didactical phenomenology of mathematical structures.
Dordrecht, The Netherlands: D. Reidel.

Fuson, K. (1990). Conceptual structures for multi-unit numbers: Implications for
learning and teaching multi-digit addition, subtraction, and place value. Cognition
and Instruction, 7, 343-403.

Goldenberg, E. P. (1988). Mathematics, metaphors and human factors: Mathematical,
technical, and pedagogical challenges in the educational use of graphical
representation of functions. Journal of Mathematical Behavior, 7(2), 135-173.

Goldman, S. (1994). Middle school mathematics through applications project (MMAP):
Second year progmss report to the national science foundation. Palo Alto, CA:
Institute for Research on Learning.

Grant, R., Feick, P., & Feurzeig, W. (1971). Programming languages as a conceptual
framework for teaching mathematics. Volume 2: Logo teaching sequences on
nwnbers, functions and equations (Report No. 2165). Cambridge, MA: Bolt,
Beranek and Newman.

Gravemeijer, K. (1992). Educational development and developmental research in
mathematics education. Unpublished paper, State University of Utrecht,
Freudenthal Institute, Utrecht.

Harel, I. (1991). Children designers. Interdisciplinary constructions for learning and
knowing mathematics in a computer-rich school. Norwood, NJ: Ablex.

Hawkins, J. (1994). Cognitive Science Conference Report. Available from author,
Educational Technology Center.

Heid, M. K., & Kunkle, D. (1988). Computer generated tables: Tools for concept
development in elementary algebra. In A. Coxford (Ed.), The ideas of algebra, K-
12, (pp. 170-177). Reston, VA: National Council of Teachers of Mathematics.

Howson, G., Keitel, C., & Kilpatrick, J. (1981). Curriculum development in
mathematics. Cambridge, England: Cambridge University Press.

Hunter, B. (1993, Fall). Collaborative inquiry in networked communities. Hands On
(TERC Newsletter), 16(2), 1.

Hunter, B., & Goldberg, B. (1994). Learning and teaching in 2004: The big dig. Paper
prepared for the Office of Technology Assessment. Available from the first author at
Bolt, Beranek and Newman, Inc. Educational Technologies Dept., Cambridge, MA.



Kaput, J. (1986). Information technology and mathematics: Opening new
representational windows. Journal of Mathematical Behavior, 5, 187-207.

Kaput, J. (1994). Democratizing access to calculus: New routes using old roots. In A.
Schoenfeld (Ed.), Mathematical thinking and problem solving, (pp. 77-156).
Hillsdale, NJ: Erlbaum.

Kaput, J. (1995). Long-term algebra reform: Democratizing access to big ideas. In C.
Lacampagne, W. Blair, & J. Kaput (Eds.), The Algebra Initative Colloquium, (Vol. 1,
pp. 33-49). Washington, DC: U.S. Department of Education.

Kaput, J. (in preparation). Year 2 SimCalc NSF Annual Report. Available from author.

Kaput, J., & Sims-Knight, J. (1983). Errors in translations to algebraic equations: Roots
and implications. In M. Behr & G. Bright (Eds.), Mathematics learning problems of
the post secondary student, Special Issue of Focus on Learning Problems in
Mathematics.

Katz, V. (1995). The development of algebra and algebra education. In C. Lacampagne,
W. Blair, & J. Kaput (Eds.), The Algebra Initiative Colloquium, (Vol. 1, ).
Washington, DC: U.S. Department of Education.

Kline, M. (1972). Mathematical thought from ancient to modern times. New York, NY:
Oxford University Press.

Kuchemann, D. (1981). Algebra. In K. M. Hart (Ed.), Children's understanding of
mathematics concepts: II-16P, (pp. 103-119). Oxford, England: Alden Press.

Kuchemann, D. (1984). Stages in understanding algebra. Journal of Structural
Learning, 8, 113-124.

Latour, B., & Woolgar, S. (1986) Laboratory life: The construction of scientific facts.
Princeton, NJ: Princeton University Press.

Lehrer, R., & Danneker, D. (in preparation). Springboards to algebra. In J. Kaput (Ed.),
Employing Children's Natural Powers to Build Algebraic Reasoning in the Content
of Elementary Mathematics.

Lehn-r, R., Horvath, J., & Schauble, L. (manuscript submitted for publication).
Oeveloping model-based reasoning.

Lesh, R., & Lovitts, B. (1994). Priorities for Research. National Science Foundation
Program for Research in Teaching and Learning, Washington, DC.

Linchevski, L. (1995). Algebra with numbers and arithmetic with letters: A definition of
pre-algebra. Journal of Mathematical Behavior, 14, 113-120.

Mason, J. (in preparation). Invoking children's mathematical powers of mathematical
thinking. In J. Kaput (Ed.), Employing Children's Natural Powers to Build Algebraic
Reasoning in the Content of Elementary Mathematics.

Matz, M. (1982). Towards a process model for high school algebra errors. In D. H.
Sleeman & J. S. Brown (Eds.), Intelligent tutoring systems, (pp. 25-50). New York:
Academic Press.

McArthur, D., Stasz, C., & Zmunidzinas, M. (1990). Tutoring techniques in algebra.
Cognition and Instruction, 7, 197-244.

Morris, A. K. (1995). Development of algebraic reasoning in children and adolesce. ts:
Cultural, curricular, and age-related effects. Unpublished doctoral dissertation, The
Ohio State University.



National Council of Teachers of Mathematics. (1989). Curriculum and evaluation
standards for school mathematics. Reston, VA: Author.

National Council of Teachers of Mathematics. (1991). Professional standards for
teaching mathematics. Reston, VA: Author.

National Council of Teachers of Mathematics. (in preparation). Algebra in the K-12
Curriculum (Discussion Draft). Reston, VA: Atehor.

Nemirovsky, R. (1994). On ways of symbolizing: The case of Laura and velocity sign.
The Journal of Mathematical Behavior,I 3, 389-422.

Noss, R. (in preparation). Programming and mathematics: Equation or inequity? In J.
Kaput (Ed.), Employing Children's Natural Powers to Build Algebraic Reasoning in
the Content of Elementary Mathematics.

Noss, R., Hoyles, C., & Sutherland, R. (1993). Teachers' characteristics and attitudes
as mediating variables in computer-based mathematics learning. Paper presented at
the Proceedings of the Fourteenth PME Conference, Mexico City.

Papert, S. (1980). Mindstornzs. New York, NY: Basic Books.

Pea, R. D. (1993). Practices of distributed intelligence and designs for education. In G.
Salamon (Ed.), Distributed cognition, (pp. 47-87). New York: Cambridge
University Press.

Picciotto, H. (in preparation). A proposal for new directions in early mathematics:
Operation sense, tool-based pedagogy, curricular breath. In J. Kaput (Ed.),
Employing Children's Natural Powers to Build Algebraic Reasoning in the Content
of Elementary Mathematics.

Picciotto, H., & Wah, A. (1993, March). New algebra: Tools, themes, concepts.
Journal of Mathematical Behavior, 12(1).

Polanyi, M. (1958). Personal knowledge. Chicago, IL: Chicago University Press.

Pycior, H. M. (1981). George Peacock and the British Origins of Symbolic Algebra.
Historia Mathematica, 8, 23-45.

Rachlin, S. (1981). Processes used by college students in understanding basic algebra.
Doctoral Dissertation, University of Georgia, Athens, GA.

Rich, B. (1990). The effect of the use of graphing calculators on the learning of function
concepts in precalculus mathematics. Dissertation Abstracts International, 52,
835A.

Romberg, T. (1981). The field-based basis of quantitative procedures for the study of
schooling. In B. Tabachnick & T. Popkewitz (Eds.), The study of schooling: Field-
based methodologies in educational research and evaluation. New York: Praeger.

Romberg, T. (1983). A common curriculum for mathematics. In G. I. Fenstermacher &
J. I. Goodlad (Eds.), Individual differences and the common curriculum, (pp. 121-
159). Chicago, IL: NSSE.

Romberg, T., et al. (in press). Mathematics in context: A connected curriculum for
grades 5-8. Chicago, IL: Encyclopedia Britannica Educational Corporation.

Romberg, T., Carpenter, T., & Fennema, E. (Eds.). (1993). Integrating researrh on the
graphical mpresentation of functions. Hillsdale, NJ: Lawrence Erlbaum Associates.



Romberg, T., & Spence, M. (1995). Some thoughts on algebra for the evolving work
force. In C. Lacampagne, W. Blair, & J. Kaput (Eds.), The Algebra Initiative
Colloquium, (Vol. 2, pp. 177-192). Washington, DC: U.S. Department of Education.

Russell, S., et al. (1995). Investigations 3rd/4th grade interpreting graph units. Palo
Alto, CA: Dale Seymour Publications.

Sandefur, J. (1990). Discrete dynamical systems: Thew", and applications. Oxford:
Clarendon Press.

Sandefur, J. (1992). Technology, linear equations, and buying a car. Math Teacher
article, 85(7), 562-567.

Schiller, D. (1994). Voicing the new pedagogy: Teachers write about learning and
teaching mathematics, Center for the Development of Teaching Paper Series.
Newton, MA: Education Development Center.

Schwartz, J., & Yerushalmy, M. (1990). The function supposer. Pleasantville, NY:
Sunburst Communications.

Sfard, A. (1995). The development of algebra: Confronting historical and psychological
perspectives. Journal of Mathematical Behavior, 14, 15-39.

Slavit, D. (1994). Algebra instruction using the graphing calculator and its effect on
students' conceptions of functions. Unpublished doctoral dissertation, University of
Delaware.

Sleeman, D. (1982). Assessing aspects of competence in basic algebra. In D. Sleeman &
J. S. Brown (Eds.), Intelligent tutoring systems, (pp. 185-200). New York: Academic
Press.

Sleeman, D. (1984). An attempt to understand students' understanding of basic algebra.
Cognitive Science, 8, 387-412.

Sleeman, D., Kelly, A. E., Martinak, R., Ward, R., & Moore, J. (1989). Studies of
diagnosis and remediation with high school algebra students. Cognitive Science,
13(4), 551-568.

Steffe, L. P., & Cobb, P. (1988). Construction of arithmetical meanings and strategies.
New York: Springer-Verlag.

Soviet Studies in Mathematics Education, Vol. 6. (1976). Reston, VA: NCTM.

Summary Report to the ICME 7 Working Group. (1995). Journal of Mathematical
Behavior, 14.

Teles, E. J. (1989). Numerical and graphical presentation of functions in precalculus.
Dissertation Abstracts International, 51, 777A.

Thompson, P. (1994). Students, functions, and the undergraduate curriculum. In E.
Dubinsky, J. Kaput, & A. Schoenfeld (Eds.), Research in collegiate mathematics
education, (Vol. 1, ). Providence, RI: American Mathematical Society.

Thompson, P., & Smith, J. (in preparation). Quantitative reasoning as a foundation for
the development of algebraic reasoning. In J. Kaput (Ed.), Employing Children's
Natural Powers to Build Algebraic Reasoning in the Content of Elementary
Mathematics.

Thompson, P. W. (1993). Nantitative reasoning, complexity, and additive structures.
Educational Studies in Mathematics, 25(3), 165-208.



Thompson, P. W. (1995). Quantitative reasoning, complexity and additive structures.
Educational Studies in Mathematics.

Tierney, C., & Monk, S. (in preparation). Children's reasoning about change over time.
In J. Kaput (Ed.), Employing Children's Natural Powers to Build Algebraic
Reasoning in the Content of Elementary Mathematics.

van Reeuwijk, M. (in preparation). Algebra & realistic mathematics. In J. Kaput (Ed.),
Employing Children's Natural Powers to Build Algebraic Reasoning in the Content
of Elementary Mathematics.

Vinner, S. (1983). Concept definition, concept image and the notion of function.
International Journal of Mathematical Education in Science and Technology, 14(3),
293-305.

Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concept of function.
Journal for Research in Mathematics Education, 20(5), 356-366.

Yerushalmy, M. (1991). Student perceptions of aspects of algebraic function using
multiple representation software. Journal of Computer Assisted Learning, 7, 42-57.

Yerushalmy, M., & Schwartz, E. (1993). Seizing the opportunity to make algebra
mathematically and pedagogically interesting. In T. Romberg, E. Fennema, & T.
Carpenter (Eds.), Integrating Research on the Graphical Representation of
Functions, (pp. 41-68). Hillsdale, NJ: Lawrence Erlbaum Associates.


